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1. Introduction
We start with following notations. The class of maps that are holomorphic on

the unit open disk ∆ = {ζ : ζ ∈ C with |ζ| < 1} and of form

h(ζ) = ζ +
∞∑
l=2

alζ
l (1.1)
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is denoted by A. The subclass of all functions of A that are univalent in ∆ is
denoted by S. The Köebe 1

4
theorem [9] confirms that the image of ∆ under each

univalent function h ∈ A contains a disk of radius 1
4
. Therefore, any univalent

function h has an inverse h−1 satisfying h−1(h(ζ)) = ζ, ζ ∈ ∆ and

h−1(h(λ)) = λ,

(
|λ| < r0(h), r0(h) ≥

1

4

)
,

where

γ(λ) = h−1(λ) = λ− a2λ
2 + (2a22 − a3)λ

3 − (5a32 − 5a2a3 + a4)λ
4 + .... (1.2)

A function h ∈ A is said to be bi-univalent in ∆ if h and h−1 are univalent
in ∆. Let Σ denote the class of bi-univalent functions defined in the unit disk ∆.
The class of holomorphic bi-univalent functions was first presented and studied by
Lewin [13] who proved that |a2| < 1.51. Later, Brannan and Clunie [5] improved
Lewin’s result to |a2| ≤

√
2.

A function is called a ρ-fold symmetric if it has the form

h(ζ) = ζ +
∞∑
l=1

alρ+1ζ
lρ+1, ζ ∈ ∆, ρ ∈ N. (1.3)

We denote by Sρ the class of ρ-fold symmetric univalent functions in ∆. Each
bi-univalent function generates an ρ-fold symmetric bi-univalent function for any
integer ρ ∈ N. The normalized form of h is given as in (1.3) and the series expansion
for h−1, which was recently proven by Srivastava et al. [20], is given as follows:

γ(λ) = h−1(λ) = λ− aρ+1λ
ρ+1 +

[
(ρ+ 1)a2ρ+1 − a2ρ+1

]
λ2ρ+1−[

1

2
(ρ+ 1)(3ρ+ 2)a3ρ+1 − (3ρ+ 2)aρ+1a2ρ+1 + a3ρ+1

]
λ3ρ+1 + ....

(1.4)
where h−1 = γ, we denote by Σρ the class of ρ-fold symmetric bi-univalent functions
in ∆.
Examples of ρ-fold symmetric bi-univalent functions are(

ζρ

1− ζρ

) 1
ρ

,

[
1

2
log

(
1 + ζρ

1− ζρ

) 1
ρ

]
, [− log(1− ζρ)]

1
ρ , ...

and the corresponding inverse functions are(
λρ

1 + λρ

) 1
ρ

,

(
e2λ

ρ − 1

e2λρ + 1

) 1
ρ

,

(
eλ

ρ − 1

eλρ

) 1
ρ

, ...
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Brannan and Taha [6] and Taha [21] considered certain subclasses of bi-univalent
functions formed by strongly starlike, convex, and starlike functions. They pre-
sented bi-convex and bi-starlike functions, as well as found non-sharp estimates
for the coefficients |a2| and |a3|. Nowadays, many authors introduced and studied
bounds for various subclasses of bi-univalent functions ([4, 2, 3, 8, 15, 17, 10, 12,
1, 11]). For two regular functions h and γ in ∆, the subordination between them
is written as h ≺ γ. The function h(ζ) is subordinate to γ(ζ) if there is a Schwarz
function G with G(0) =0, |G(z)| < 1, for all ζ ∈ ∆, such that h(ζ) = γ(G(ζ)) for
all ζ ∈ ∆.

Motivated by the previously published works and Rosihan et al. [1], in the
next section we introduce new subclasses of bi-univalent functions HΣρ(ψ) and
ST Σρ(η, ψ). Let ψ be a holomorphic function with positive real part in ∆ such
that ψ(0) = 1, ψ(0) > 0 and ψ(∆) is symmetric with respect to real axis. Such a
function has the form

ψ(ζ) = 1 + ξ1ζ + ξ2ζ
2 + ξ3ζ

3 + ..., (ξ1 > 0). (1.5)

Lemma 1.1. [16] If the function p ∈ P is given by the series

p(ζ) = 1 + c1ζ + c2ζ
2 + c3ζ

3 + ..., (1.6)

then
|cn| ≤ 2 (n = 1, 2, ...).

2. Main Results

Definition 2.1. Let h ∈ Σρ. Then h ∈ HΣρ(ψ) if it satisfies the condition
h′(ζ) ≺ ψ(ζ) and γ′(λ) ≺ ψ(λ), where γ(λ) = h−1(λ).

Theorem 2.2. Let h ∈ HΣρ(ψ) and given by (1.3). Then

|aρ+1| ≤
√
2ξ

3
2
1√

|(ρ+ 1)(2ρ+ 1)ξ21 + 2(ρ+ 1)2ξ1 − 2(ρ+ 1)2ξ2|
(2.1)

and

|a2ρ+1| ≤
ξ1

(2ρ+ 1)
+

ξ21
2(ρ+ 1)

. (2.2)

Proof. Let h ∈ HΣρ(ψ) and γ = h−1. Hence there are regular functions Φ,Ψ :
∆→ ∆, with Φ(0) = Ψ(0) = 0, satisfying

h′(ζ) = ψ(Φ(z)) and g′(λ) = ψ(Ψ(λ)). (2.3)
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Define the functions p1 and p2 by
p1(ζ) =

1+Φ(ζ)
1−Φ(ζ)

= 1+ cρζ
ρ + c2ρζ

2ρ + ... and p2(ζ) =
1+Ψ(ζ)
1−Ψ(ζ)

= 1+ bρζ
ρ + b2ρζ

2ρ + ...,
or, equivalently,

Φ(ζ) =
p1(ζ)− 1

p1(ζ) + 1
=

1

2

(
cρζ

ρ + (c2ρ −
c2ρ
2
)ζ2ρ + ...

)
(2.4)

and

Ψ(ζ) =
p2(ζ)− 1

p2(ζ) + 1
=

1

2

(
bρζ

ρ + (b2ρ −
b2ρ
2
)ζ2ρ + ...

)
. (2.5)

Obviously that p1 and p2 are regular in ∆ and p1(0) = p2(0) = 1. Since p1, p2 ∈ P ,
Therefore |bi| ≤ 2 and |ci| ≤ 2, (i ∈ N).
Now, by substituting from (2.4) and (2.5) into (2.3), and using (1.5), we get

h′(ζ) = ψ

(
p1(ζ)− 1

p1(ζ) + 1

)

= ψ

(
cρζ

ρ + c2ρζ
2ρ + c3ρζ

3ρ + ...

2 + bρζρ + b2ρζ2ρ + b3ρζ3ρ + ...

)

= ψ

[
1

2
cρζ

ρ +
1

2
(c2ρ −

c2ρ
2
)ζ2ρ +

1

2
(c3ρ − cρc2ρ +

c3ρ
4
)ζ3ρ + ...

]

= 1 +
ξ1cρ
2
ζρ +

[
ξ1
2
(c2ρ −

c2ρ
2
) +

ξ2c
2
ρ

4

]
ζ2ρ

+

[
ξ1
2
(c3ρ − cρc2ρ +

c3ρ
4
) +

ξ2cρ
2

(c2ρ −
c2ρ
2
) +

ξ3c
3
ρ

8

]
ζ3ρ + ... (2.6)

and

γ′(λ) = ψ

(
p2(λ)− 1

p2(λ) + 1

)
= 1+

1

2
ξ1bρλ

ρ+

(
1

2
ξ1

(
b2ρ −

b2ρ
2

)
+

1

4
ξ2b

2
ρ

)
λ2ρ+ ... (2.7)

Since h ∈ Σk is given by (1.3), therefore its inverse γ = h−1 has the expansion

γ(λ) = h−1(λ) = λ− aρ+1λ
ρ+1 +

[
(ρ+ 1)a2ρ+1 − a2ρ+1

]
λ2ρ+1 − ....

Since
h′(ζ) = 1 + (ρ+ 1)aρ+1ζ

ρ + (2ρ+ 1)a2ρ+1ζ
2ρ + ... and
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γ′(λ) = 1− (ρ+ 1)aρ+1λ
ρ + (2ρ+ 1)

[
(ρ+ 1)a2ρ+1 − a2ρ+1

]
λ2ρ + ..., it follows from

(2.6) and (2.7) that

(ρ+ 1)aρ+1 =
ξ1cρ
2
. (2.8)

(2ρ+ 1)a2ρ+1 =
ξ1
2

(
c2ρ −

c2ρ
2

)
+
ξ2c

2
ρ

4
. (2.9)

−(ρ+ 1)aρ+1 =
ξ1bρ
2
. (2.10)

and

(2ρ+ 1)
[
(ρ+ 1)a2ρ+1 − a2ρ+1

]
=
ξ1
2

(
b2ρ −

b2ρ
2

)
+
ξ2b

2
ρ

4
. (2.11)

From (2.8) and (2.10), we obtain

cρ = −bρ. (2.12)

and

2a2ρ+1 =
ξ21(c

2
ρ + b2ρ)

4(ρ+ 1)2
. (2.13)

By combining the equations (2.9) and (2.11) and using (2.13), we obtain

a2ρ+1 =
ξ31 (c2ρ + b2ρ)

2(ρ+ 1) [(2ρ+ 1)ξ21 − 2(ρ+ 1)ξ2 + 2(ρ+ 1)ξ1]
.

Using Lemma 1.6 for the coefficients b2ρ and c2ρ, we get

|aρ+1| ≤
√
2ξ

3
2
1√

|(ρ+ 1) [(2ρ+ 1)ξ21 − 2(ρ+ 1)2ξ2 + 2(ρ+ 1)2ξ1] |
.

Hence we get the inequality (2.1). Now, by subtracting (2.11) from (2.9) and from
(2.12), we have c2ρ = b2ρ, hence

a2ρ+1 =
1

4(2ρ+ 1)
ξ1(c2ρ − b2ρ) +

1

8(ρ+ 1)
(ξ21c

2
ρ).

Using (2.13) and Lemma 1.6 for the coefficients b2ρ and c2ρ, we obtain

|a2ρ+1| ≤
ξ1

(2ρ+ 1)
+

ξ21
2(ρ+ 1)

.
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Which completes the proof.
As ρ = 1, we get a result, presented by Rosihan et al. [1].

Corollary 2.3. Let h ∈ HΣ(ψ) and given by (1.1). Then

|a2| ≤
ξ

3
2
1√

|3ξ21 − 4ξ2 + 4ξ1|
and |a3| ≤

ξ1
3
+
ξ21
4
. (2.14)

Definition 2.4. A function f ∈ Σρ is belong to the class ST Σρ(η, ψ), η ≥ 0, if the
following subordinations hold

ζh′(ζ)

h(ζ)
+
ηζ2h′′(ζ)

h(ζ)
≺ ψ(z), (ζ ∈ ∆, )

and
λγ′(λ)

γ(λ)
+
ηλ2γ′′(λ)

γ(λ)
≺ ψ(λ), (λ ∈ ∆, )

where γ(λ) = h−1(λ).

Theorem 2.5. Let h given by (1.3) be in the class ST Σρ(η, ψ). Then

|aρ+1| ≤
ξ

3
2
1√∣∣∣∣[ρ+ 2ρ(1 + ρ)α

]
ξ21 + (ξ1 − ξ2)

[
1 + (1 + ρ)α

]2∣∣∣∣
. (2.15)

and

|a2ρ+1| ≤
(ρ+ 1)

[
ξ1 + |ξ2 − ξ1|

]
2ρ2
[
1 + 2(ρ+ 1)α

] . (2.16)

Proof. Let h ∈ ST Σρ(η, ψ). Hence there are regular functions Φ,Ψ : ∆→ ∆, with
Φ(0) = Ψ(0) = 0, satisfying

ζh′(ζ)

h(ζ)
+
ηζ2h′′(ζ)

h(ζ)
= ψ(Φ(ζ)), (ζ ∈ ∆, ) (2.17)

and
λγ′(λ)

γ(λ)
+
ηλ2γ′′(λ)

γ(λ)
= ψ(Ψ(λ)), (λ ∈ ∆, ) (2.18)

where γ(λ) = h−1(λ). By (2.17), we have
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ζ + (ρ+ 1)(1 + αρ)aρ+1ζ
ρ+1 + (2ρ+ 1)(1 + 2ηρ)a2ρ+1ζ

2ρ+1 + ... ={
1 +

1

2
ξ1cρζ

ρ +

(
1

2
ξ1

(
c2ρ −

c2ρ
2

)
+

1

4
ξ2c

2
ρ

)
ζ2ρ + ...

}
{
ζ + aρ+1ζ

ρ+1 + a2ρ+1ζ
2ρ+1 + ...

}
.

By equating the coefficients on both sides we obtain[
ρ+ ρ(1 + ρ)η

]
aρ+1 =

ξ1cρ
2
. (2.19)

[
2ρ+ 2ρ(1 + 2ρ)η

]
a2ρ+1 −

[
ρ+ ρ(1 + ρ)η

]
a2ρ+1 =

1

2
ξ1

(
c2ρ −

c2ρ
2

)
+

1

4
ξ2c

2
ρ. (2.20)

Also, from (2.18), we have

λ−(ρ+1)(1+ηρ)aρ+1λ
ρ+1+(2ρ+1)(1+2ηρ)((ρ+1)a2ρ+1−a2ρ+1)λ

2ρ+1+... ={
1 +

1

2
ξ1bρλ+

(
1

2
ξ1

(
b2ρ −

b2ρ
2

)
+

1

4
ξ2b

2
ρ

)
λ2ρ + ...

}
{
λ− aρ+1λ

ρ+1 +
[
(ρ+ 1)a(ρ+ 1)2 − a2ρ+1

]
λ2ρ+1 + ...

}
.

By equating the coefficients on both sides we obtain

−
[
ρ+ ρ(1 + ρ)η

]
aρ+1 =

ξ1bρ
2
. (2.21)

[
ρ(2ρ+1)+ρ(ρ+1)(4ρ+1)

]
a2ρ+1−2

[
ρ+ρ(2ρ+1)η

]
a2ρ+1 =

1

2
ξ1

(
b2ρ −

b2ρ
2

)
+
1

4
ξ2b

2
ρ.

(2.22)
From (2.19) and (2.21), we obtain

cρ = −bρ. (2.23)

and

2a2ρ+1 =
ξ21(c

2
ρ + b2ρ)

4 [ρ+ ρ(ρ+ 1)η]2
. (2.24)
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By combining the equations (2.20) and (2.22) and using (2.24), we obtain

a2ρ+1 =
ξ31 (b2ρ + c2ρ)

4ρ2
[(
ρ+ 2ρ(ρ+ 1)η

)
ξ21 + (ξ1 − ξ2)

(
(1 + (ρ+ 1)η

)2] .
Using Lemma 1.6 for b2ρ and c2ρ, we have

|a2ρ+1| ≤
ξ31

ρ2
∣∣∣∣[(ρ+ 2ρ(ρ+ 1)η

)
ξ21 + (ξ1 − ξ2)

(
(1 + (ρ+ 1)η

)2]∣∣∣∣ .
Since ξ1 > 0, the inequality (2.15) obtained from the last inequality. Now, by
subtracting (2.22) from (2.20) and from (2.23), we obtain c2ρ = b2ρ, hence

a2ρ+1 =

ξ1
2

[(
(1 + 2ρ) + (1 + ρ)(1 + 4ρ)η

)
c2ρ +

(
1 + (1 + ρ)η

)
b2ρ

]
4ρ2
[
1 + (1 + 2ρ)η)

][
1 + 2(1 + ρ)η

]

+
(1 + ρ)b2ρ(ξ2 − ξ1)

8ρ2
[
1 + 2(1 + ρ)η

] .
Using (2.24) and Lemma 1.6 for the coefficients b2ρ and c2ρ, we get

|a2ρ+1| ≤
(1 + ρ)

[
ξ1 + |ξ2 − ξ1|

]
2ρ2
[
1 + 2(1 + ρ)η

] . .

This is the requirement inequality in (2.16).
As ρ = 1, we obtained a result, presented by Rosihan et al. [1].

Corollary 2.6. Let h given by (1.1) be in the class ST Σ(η, ψ). Then

|a2| ≤
ξ

3
2
1√∣∣[(1 + 4η)ξ21 + (ξ1 − ξ2)(1 + 2η)2

∣∣ .
and

|a3| ≤
ξ1 + |ξ2 − ξ1|
(1 + 4η)

.
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As ρ = 1 and for η = 0, we obtained the Ma-Minda’s coefficient estimates for
bi-starlike functions.

Corollary 2.7. Let h given by (1.1) be in the class ST Σ(ψ). Then

|a2| ≤
ξ

3
2
1√∣∣ξ21 + (ξ1 − ξ2

∣∣ .
and

|a3| ≤ ξ1 + |ξ2 − ξ1|.
Definition 2.8. A function h ∈ Σρ is said to be in the class MΣρ(η, ψ), η ≥ 0, if
the following subordinations hold

(1− η)
ζh′(ζ)

h(ζ)
+ η

(
1 +

ζh′′(ζ)

h′(ζ)

)
≺ ψ(ζ), (ζ ∈ ∆, )

and

(1− η)
λγ′(λ)

γ(λ)
+ η

(
1 +

λγ′′(λ)

γ′(λ)

)
≺ ψ(λ), (λ ∈ ∆, )

where γ(λ) = h−1(λ).

Theorem 2.9. Let h given by (1.3) be in the class MΣρ(η, ψ). Then

|aρ+1| ≤
√
2ξ31√∣∣∣∣((1 + ρ)(1 + ρ2η))ξ21 + 2ρ2(ξ1 − ξ2)

(
1 + ηρ

)2∣∣∣∣
. (2.25)

and

|a2ρ+1| ≤
(
(3ρ+ 1) + ρ2(3ρ+ 5)η

)[
ξ1 + |ξ2 − ξ1|

]
2ρ(ρ+ 1)(1 + ρ2η)(1 + 2ρη)

.

(2.26)
Proof. Let h ∈ MΣk

(η, ψ). Hence there are regular functions Φ,Ψ : ∆→ ∆, with
Φ(0) = Ψ(0) = 0, satisfying

(1− η)
ζh′(ζ)

h(ζ)
+ η

(
1 +

ζh′′(ζ)

h′(ζ)

)
= ψ(Φ(ζ)), (ζ ∈ ∆, ) (2.27)

and

(1− η)
λγ′(λ)

γ(λ)
+ η

(
1 +

λγ′(λ)

γ′(λ)

)
= ψ(Ψ(λ)), (λ ∈ ∆, ) (2.28)
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where γ(λ) = h−1(λ). By (2.27), we have

ζ+
[
2(ρ+1)+ηρ2

]
aρ+1ζ

ρ+1+

[(
2(1+2ρ)+4ηρ2

)
a2ρ+1+

(
ρ2+2ρ+1

)
a2ρ+1

]
ζ2ρ+1+...

=

{
1 +

1

2
ξ1cρζ

ρ +

(
1

2
ξ1

(
c2ρ −

c2ρ
2

)
+

1

4
ξ2c

2
ρ

)
ζ2ρ + ...

}
{
ζ + (ρ+2)aρ+1ζ

ρ+1 +
[
(ρ+1)a2ρ+1 +2(ρ+1)a2ρ+1

]
ζ2ρ+1 + ...

}
.

By equating the coefficients on both sides we get(
ρ+ ηρ2

)
aρ+1 =

ξ1cρ
2
. (2.29)

2ρ

[
1 + 2ηρ

]
a2ρ+1 − ρ

[
1 + ρ(2 + ρ)η

]
a2ρ+1 =

1

2
ξ1

(
c2ρ −

c2ρ
2

)
+

1

4
ξ2c

2
ρ. (2.30)

Also, from (2.28), we have

λ−
[
2(1+ρ)+ηρ2

]
aρ+1λ

ρ+1+

{
(ρ+1)

[
(5ρ+3)+4ηρ2

]
a2ρ+1−2

[
(2ρ+1)2ηρ2

]
a2ρ+1

}
λ2ρ+1+ ...

=

{
1 +

1

2
ξ1bρλ

ρ +

(
1

2
ξ1

(
b2ρ −

b2ρ
2

)
+

1

4
ξ2b

2
ρ

)
λ2ρ + ...

}
{
λ− (ρ+ 2)aρ+1λ

ρ+1 +

[
(ρ+ 1)(2ρ+ 3)a2ρ+1 − 2(ρ+ 1)a2ρ+1

]
λ2ρ+1 + ...

}
.

By equating the coefficients on both sides we get

−
(
ρ+ ηρ2

)
aρ+1 =

ξ1bρ
2
. (2.31)

[
(2ρ+1)+ρ2(2ρ+3)η

]
a2ρ+1−2ρ

[
1+2ηρ

]
a2ρ+1 =

1

2
ξ1

(
b2ρ −

b2ρ
2

)
+
1

4
ξ2b

2
ρ. (2.32)

From (2.29) and (2.31), we obtain

cρ = −bρ. (2.33)

and

2a2ρ+1 =
ξ21(c

2
ρ + b2ρ)

4 [ρ+ ηρ2]2
. (2.34)
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By combining the equations (2.30) and (2.32) and using (2.34), we obtain

a2ρ+1 =
ξ31 (b2ρ + c2ρ)

2(ρ+ 1)(1 + ηρ2)ξ21 + 4ρ2(ξ1 − ξ2)(1 + ηρ)2
.

Using Lemma 1.6 for b2ρ and c2ρ, we obtain

|a2ρ+1| ≤
2ξ31∣∣∣∣(ρ+ 1)(1 + ηρ2)ξ21 + 2ρ2(ξ1 − ξ2)(1 + ηρ)2

∣∣∣∣ .
Thus we get the result (2.25).
Now, by subtracting (2.32) from (2.30) and from (2.33), we obtain c2ρ = b2ρ, therefore

a2ρ+1 =

ξ1
2ρ

[(
(2ρ+ 1) + ρ2(2ρ+ 3)η

)
c2ρ + ρ

(
1 + ρ(ρ+ 2)η

)
b2ρ

]
2(ρ+ 1)(1 + ρ2η)(1 + 2ρη)

+

b2ρ(ξ2 − ξ1)

[
(3ρ+ 1) + ρ2(3ρ+ 5)η

]
8ρ(ρ+ 1)(1 + ρ2η)(1 + 2ρη)

.

Using (2.34) and Lemma 1.6 for the coefficients b2 and c2, we get

|a2ρ+1| ≤
(
(3ρ+ 1) + ρ2(3ρ+ 5)η

)[
ξ1 + |ξ2 − ξ1|

]
2ρ(ρ+ 1)(1 + ρ2η)(1 + 2ρη)

.

which completes the proof.
As ρ = 1, we have a result, presented by Rosihan et al. [1].

Corollary 2.10. Let f given by (1.1) and belongs to the class MΣ(η, ψ). Then

|a2| ≤
ξ1
√
ξ1√∣∣(1 + η)ξ21 + (ξ1 − ξ2)(1 + η)2

∣∣ .
and

|a3| ≤
ξ1 + |ξ2 − ξ1|

(1 + η)
.

As ρ = 1 and η = 1, we get the Ma-Minda’s coefficient estimates for bi-convex
functions, however if η = 0, we obtained the Ma-Minda’s coefficient estimates for
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bi-starlike functions.

Corollary 2.11. Let h given by (1.1) be in the class CVΣ(ψ). Then

|a2| ≤
ξ

3
2
1√

2
∣∣ξ21 + 2ξ1 − 2ξ2

∣∣ .
and

|a3| ≤
1

2
(ξ1 + |ξ2 − ξ1|).

References

[1] Ali R. M., Lee S. K., Ravichandran V. and Supramaniam S., Coefficient
estimates for bi-univalent Ma-Minda starlike and convex functions, Applied
Mathematics Letters, 25(3) (2012), 344-351.

[2] Aldawish I., Swamy S. R., Frasin B. A., A Special Family of m-Fold Sym-
metric Bi-Univalent Functions Satisfying Subordination Condition., Fractal
Fract, 6 (2022), 271.

[3] Al-shbeil I., Khan N., Tchier F., Xin Q., Malik S. N., Khan S., Coefficient
Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions, Axioms,
12 (2023), 317.
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